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Figure 1: Systematic video defocus deblurring and editing. Taking a misfocused video as input (first row), we first reconstruct
the latent sharp video (second row), parameterizing it into two atlases reconstructed from noise. We edit our background atlas
in Adobe Photoshop, changing some objects (blue arrows) in the scene. These simple edits propagate to the entire video in a
consistent and temporally stable manner. Finally, during compositing, we fix subject tracking and change the background
bokeh. These edits are also consistent and temporally stable. We slice a piece of video data (yellow dash line) on the time
dimension and present it in the last column, demonstrating motion quality. The only costly step of our method is learning the
initial parametrization; edits can be made in real time.
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ABSTRACT
Misfocus is ubiquitous for almost all video producers, degrading
video quality and often causing expensive delays and reshoots. Cur-
rent autofocus (AF) systems are vulnerable to sudden disturbances
such as subject movement or lighting changes commonly present
in real-world and on-set conditions. Single image defocus deblur-
ring methods are temporally unstable when applied to videos and
cannot recover details obscured by temporally varying defocus blur.
In this paper, we present an end-to-end solution that allows users
to correct misfocus during post-processing. Our method generates
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and parameterizes defocused videos into sharp layered neural at-
lases and propagates consistent focus tracking back to the video
frames. We introduce a novel differentiable disk blur layer for more
accurate point spread function (PSF) simulation, coupled with a
circle of confusion (COC) map estimation module with knowledge
transferred from the current single image defocus deblurring (SIDD)
networks. Our pipeline offers consistent, sharp video reconstruc-
tion and effective subject-focus correction and tracking directly
on the generated atlases. Furthermore, by adopting our approach,
we achieve comparable results to the state-of-the-art optical flow
estimation approach from defocus videos.

CCS CONCEPTS
• Computing methodologies → Computational photography.

KEYWORDS
defocus deblur, implicit representation, neural atlas, video deblur,
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1 INTRODUCTION
Shallow focus initially emerged due to early filmmaking constraints
such as limited ISO sensitivity. However, directors soon leveraged
its storytelling potential to direct the audience’s attention. Thus,
shallow focus quickly became essential for achieving a cinematic
look. Today, professional focus pullers meticulously plan for shoots,
particularly long takes or "oners", involving extensive camera move-
ment and complex blocking. Maintaining focus is crucial for a suc-
cessful shot.

Conversely, amateur content creators rely on camera autofocus
(AF). Modern AF systems have advanced from traditional Contrast
Detection (CDAF) [Chen and van Beek 2015; Vuong and Lee 2013]
and Phase Detection (PDAF) [Fontaine 2017; Inoue and Takahashi
2009] to smarter systems with face, eye, and object tracking capa-
bilities [Wang et al. 2021]. Unfortunately, in real-world scenarios,
abrupt changes in subject movement, lighting conditions, or the
presence of multiple subjects can easily disrupt AF systems, result-
ing in misfocused footage.

Technical deficiencies and human mistakes frequently force
video producers to either reshoot their misfocused footage or settle
for lower-quality videos, ignoring the focus errors. Restoration of
misfocused footage in post-production is emerging as a promising
alternative. Our paper introduces a pipeline designed to reconstruct
sharp content from videos distorted by defocus, enable focus editing
to fix subject tracking, allow for convenient scene editing via our
learned atlas, and output additional channels that enable complex
effects during compositing.

In Fig. 2, we illustrate the complexity of our task by simulating
a video featuring three spatial points: a stationary green point in
the foreground, a stationary blue point in the background, and a
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Figure 2: Spatially and temporally varying defocus blur. The
focus distance moves from front to back (𝑧1 → 𝑧4) as the
video capturing progresses (𝑡1 → 𝑡4). We represent the focal
plane as a light blue rectangle for each frame. The green and
blue points are static and placed at different spatial locations
and depths, while the orange point moves in 3D space for
each frame following the orange curve.

dynamic orange point moving freely in 3D space. Each stationary
point has a unique defocus level determined by its depth in the
scene. As the focus distance shifts from front to back (light blue
rectangles) over time, the defocus degree for each stationary point
also changes. In real-world video capture scenarios, camera move-
ment adds another layer of ambiguity. These complexities pose
significant challenges to video defocus deblurring and influence
other video processing tasks such as object tracking or optical flow
estimation [Ruan et al. 2021; Teed and Deng 2020].

Correcting misfocus is a two-step procedure that includes elimi-
nating defocus blur, also known as defocus deblurring, followed by
defocus synthesis, which applies defocus blur following the scene’s
depth. Defocus synthesis is a forward problem and has been inves-
tigated for images [Srinivasan et al. 2018; Wadhwa et al. 2018] and
videos [Zhang et al. 2019] in the past. Defocus deblurring, on the
other hand, is an inverse problem and poses different challenges
than defocus synthesis. Misfocus correction in video, unlike single
image defocus deblurring (SIDD), requires an emphasis onmaintain-
ing temporal consistency. The key difficulty here is the temporally
varying defocus blur caused by changes due to scene and camera
motion and, potentially, autofocus camera functionality.

Inspired by recent implicit video representation approaches [Kas-
ten et al. 2021], we apply the layered atlas to parameterize and
deblur our video with good consistency and temporal stability. Re-
cently, Abuolaim et al. [2021] synthesized a dataset based on the
sharp images and depth maps in the SYNTHIA dataset [Hernandez-
Juarez et al. 2019]. However, when applied to real-world videos,
methods trained on synthetic datasets often suffer due to the do-
main gap. Our self-supervised network circumvents the need for
such extensive datasets and performs deblurring directly on each
individual video.

In this work, we make the following contributions: (1) We in-
troduce the first end-to-end video defocus deblurring approach, al-
lowing for extensive scene editing, including focus corrections and
bokeh editing. (2) We implement a lens blur CUDA layer featuring
a novel differentiable disk kernel capable of simulating the realistic
fall-off boundary (soap bubble effect) of the Point Spread Function
(PSF). (3) We introduce a COC map estimation network using a
transfer learning approach. This strategy facilitates a more light-
weight architecture while maintaining competitive performance.

https://doi.org/10.1145/3641519.3657524
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(4) As a direct application of our pipeline, we show that focus cor-
rection and tracking can be conducted on our output foreground
and background channels, our learned atlases allow for extensive
editing, and we demonstrate that optical flow can also be estimated
from our learned UV map.

Our code and the training data we rendered with synthetic defo-
cus are available under https://neuralatlasvdd.mpi-inf.mpg.de.

2 RELATEDWORK
In this section, we cover two main tracks of work that are most
related to our approach: the image/video defocus deblurring and
implicit image/video representations.

2.1 Image/Video Defocus Deblurring
Dealing with defocus blur has been a persistent challenge in image
processing and computer vision, largely because of its inherent
spatially varying nature in static and dynamic scenes compared to
motion blur. Recovering the sharp latent details and information
from blurred images or videos holds significant potential for various
applications, including object detection [Redmon and Farhadi 2018]
and text recognition [Liao et al. 2021]. Themajority of prior research
has concentrated on SIDD.

Single Image Defocus Deblurring. Traditional solutions typically
follow a two-step process involving estimating a dense defocus
map followed by non-blind deconvolution [D’Andrès et al. 2016;
Karaali and Jung 2017; Park et al. 2017; Shi et al. 2015]. In this
process, the quality and precision of the defocus map are critical
factors significantly impacting the final outcome. Techniques uti-
lizing deep neural networks to estimate defocus maps have been
proposed [Karaali et al. 2022; Lee et al. 2019]. Recent works such
as [Zhang and Sun 2021] and [Piché-Meunier et al. 2023] have ad-
vanced the estimation process by jointly deriving depth and defocus
while adhering to consistency constraint, where deriving the lens
parameters leads to further improvements [Piché-Meunier et al.
2023].

Our work aligns with their goals in accurately determining the
circle of confusion (COC) [Potmesil and Chakravarty 1982] for real-
istic defocus synthesis. However, we diverge from these methods by
omitting scene physical depth estimation and estimating defocus
level in pixel units, which better suits our pipeline.

The advent of deep learning has significantly advanced SIDD,
leading to the emergence of neural network-based solutions. Abuo-
laim et al. [2020] introduce a dual-pixel defocus deblurring dataset
and an end-to-end network to recover a sharp image from its de-
focused counterpart. Ruan et al. [2021] introduce another dataset
synthesized from light field images to address the defocus image
and sharp ground truth mismatch problem. Other approaches have
integrated spatially varying blur into network structures with per-
pixel dynamic residual kernels [Ruan et al. 2022], iterative filter
adaptive kernels [Lee et al. 2021], learnable recursive kernels [Quan
et al. 2023], Gaussian kernel mixture [Quan et al. 2021] in an end-
to-end manner, more recent studies, e.g., [Zamir et al. 2022] have
incorporated transformer structures. Unfortunately, most of these
methods present as a black box providing no straightforward ways
to obtain COC maps, use temporal data available in other frames

of the videos, or map to a temporally consistent space such as our
multi-layer atlas.

Video Defocus deblurring. Unlike single image defocus deblurring
or synthesis, blurry videos present additional challenges, partic-
ularly due to temporal variations discussed in Sec. 1. This area
remains less explored but also holds significant practical appeal.
RDPD [Abuolaim et al. 2021] proposes an RNN-based network
structure to handle defocus deblurring for image sequences. Neu-
cam [Huang et al. 2023] proposes an implicit camera model to
simulate the image signal processing (ISP) process in a deep neu-
ral network and can recover all-in-focus images from multi-focus
stacks. We compare our approach with theirs. Although no video
defocus deblurring is demonstrated in the original Neucam paper,
we adapt their video motion deblurring network to video defo-
cus deblurring for a fair comparison. It is worth noting that video
defocus deblurring is different from the problem of sharp image
reconstruction from multi-focus, which is based on the assump-
tion that the camera and scene are static. Several methods address
videos involving dynamic scenes with static cameras using custom-
designed camera systems [Zhou et al. 2012], specialized optical
systems like deformable lenses [Miau et al. 2013], or rely on known
focus distances [Kim et al. 2016]. We relax these constraints in our
approach.

2.2 Implicit image/video representation
Emerging works integrate scene representation as neural radiance
fields (NeRF) with multiple layer perceptrons (MLPs) in a contin-
uous manner for 3D geometry [Mildenhall et al. 2021]. NeRF re-
construction quality degrades when input images contain defocus
blur (shallow depth of field) [Wu et al. 2022]. To address this, Wu
et al. [2022] incorporate explicit aperture modeling, coupled with
a differentiable COC representation, while Li et al. [2022] instead
incorporate a learned deformable kernel into the pipeline to com-
pensate for defocus blur. A recent work [Wang et al. 2023] investi-
gates reconstructing the all-in-focus frame from the image stack by
simultaneously estimating depth constrained by an explicit physi-
cal camera model. Unfortunately, all these methods are limited to
static scenes.

Motivated by recent success in dynamic video representation,
such as view synthesis [Li et al. 2023], volumetric video rendering
[Peng et al. 2023], video decomposition [Kasten et al. 2021], inte-
grating MLPs to overfit to video content, we aim to fit a unique
sharp content that could represent the whole sequence, thus achiev-
ing the spatially and temporally consistency for misfocused video.
Specifically, we adopt a 2D atlas representation, which parame-
terizes the dynamic and static background separately with MLPs,
originally used for video consistent editing, allowing alterations on
the atlas to be reflected in the original video. This enables several
applications such as text-driven video stylization [Bar-Tal et al.
2022], sketch face editing [Liu et al. 2022], video de-flickering [Lei
et al. 2023], and others.

3 METHOD
Aiming for consistent video editing, layered neural atlases decom-
pose an input video into a collection of 2D layered atlases [Kasten
et al. 2021]. This representation effectively circumvents the need to

https://neuralatlasvdd.mpi-inf.mpg.de
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Figure 3: SystemOverview. Ourmapping network learns foregroundUV, backgroundUV, and alphamaps from input coordinates.
Simultaneously, the atlas network generates sharp foreground and background atlases from noise maps. We sample the
background and foreground from the atlases following the UV maps and blend the resulting layers guided by the alpha
map. Subsequently, we reblur the combined image using an estimated blur scale from our COC map estimation network. We
self-supervise this process using the original video frames, estimating them with the reblurred output, learning the sharp prior
in the process.

physically resolve the ambiguity between camera and object move-
ment in our problem (Fig. 2) by efficiently mapping the motion of
dynamic points onto a 2D plane. The multi-layer representation can
be seamlessly adapted to our specific challenge of distinguishing
between static and dynamic points, allowing for separate treatment.

Also, the layered neural atlases enable straightforward and in-
tuitive editing using readily available image editing tools, which
can be naturally propagated back to the video frames consistently.
The distinct foreground, background, and mask layers enable us to
conduct focus-tracking in post-production and are easy and quick
to compose into video frames.

The efficient representation of video, intuitive editing space,
and consistent editing quality make layered neural atlases excel
in sharp video editing. However, it does not demonstrate strong
performance when applied directly to video defocus deblurring
tasks. We demonstrate and compare the performance of the original
layered neural atlas and the combination of it and our reblurring
module in Sec. 4.2.

Figure 3 provides an overview of our training pipeline, which
consists of four main submodules: (1) The Neural Mapping Net-
work employs three MLPsM(𝑓 ,𝑏,𝛼 ) to transform input coordinates
into foreground UV map, background UV map, and alpha map,
respectively (Sec. 3.1). (2) The Atlas Learning Network (A) adopts
the deep image prior concept and utilizes a CNN network to learn
foreground and background atlases from noise (Sec. 3.2). (3) The
Lens Blur Layer (L) reblurs the latent sharp image based on the
estimated COCmap (Sec. 3.3). (4) The COCMap Estimation Network
(C) estimates the COC radius for each pixel from an input defocus
image (Sec. 3.4). We provide detailed explanations for each of these
submodules in the following subsections.

3.1 Neural Mapping
Following the principles of coordinate-based neural representa-
tions, layered neural atlases commence the synthesis process at

coordinates p𝑥,𝑦,𝑡 ∈ R3, with 𝑥 and 𝑦 representing spatial coor-
dinates and 𝑡 indicating the temporal coordinate (frame index).
Three MLPs, referred to as M𝑏 : R3 → R2, M𝑓 : R3 → R2, and
M𝛼 : R3 → R1, predict the background UV map 𝑈𝑉𝑏 ∈ R2, fore-
ground UV map 𝑈𝑉𝑓 ∈ R2, and the alpha blending map 𝛼 ∈ R1,
respectively. Each point p maps to 𝑈𝑉

p
𝑓

= M𝑓 (p) = (𝑢p
𝑓
, 𝑣

p
𝑓
),

𝑈𝑉
p
𝑏

= M𝑏 (p) = (𝑢p
𝑏
, 𝑣

p
𝑏
), and 𝛼p. We share the same architec-

ture with the original layered neural atlases with regard to this
part. However, we find that directly applying their atlas estimation
network results in inferior performance. Inspired by Deep Image
Prior (DIP) [Lempitsky et al. 2018] and [Ye et al. 2022], we employ
a CNN network for our Atlas Learning Network.

3.2 Atlas Learning
Deep Image Prior (DIP) uses the structure of a deep convolutional
network to implicitly capture prior knowledge about natural im-
age statistics and has proven to be particularly suitable for image
restoration tasks [Lempitsky et al. 2018]. In general, a simple MLP
structure tends to perform less effectively in capturing spatial fea-
tures such as textures and edges when compared to CNN structures
without specialized design [Tolstikhin et al. 2021; Tu et al. 2022].
Thus, we employ a lightweight CNN to generate and represent our
layered atlas images from noise maps. We have observed that a
decoder-only architecture efficiently learns our atlases. We applied
pixel-shuffle [Shi et al. 2016] in the upsampling layers to better
learn and preserve high-frequency details. The results indicate
improved performance compared to the original MLP-based atlas
representation, as elaborated in Sec. 4.2.

The Atlas Learning Network, denoted as A, takes as input the
noise map (𝑍 𝑓 , 𝑍𝑏 ) ∈ R𝐶

′×𝐻 ′×𝑊 ′
and upscales it to produce our

foreground and background atlas images (𝐴𝑓 , 𝐴𝑏 ) ∈ R3×𝐻×𝑊 .
Note that the Atlas Learning Network shares weights between fore-
ground and background atlas generation. Given a particular point



Self-Supervised Video Defocus Deblurring with Atlas Learning SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

p, we employ the acquired 𝑈𝑉 p
𝑓
and 𝑈𝑉 p

𝑏
coordinates to sample

colors from 𝐴𝑓 and 𝐴𝑏 . Finally, we obtain the latent sharp color
𝑐
p
sharp by combining these two colors, using the learned 𝛼 value as
the blending factor. This entire procedure can be summarized as
follows:

𝑐
p
sharp = 𝛼𝐴𝑓 (M𝑓 (p)) + (1 − 𝛼)𝐴𝑏 (M𝑏 (p)) (1)

where 𝐴𝑓 = A(𝑍 𝑓 ) and 𝐴𝑏 = A(𝑍𝑏 ). Note that we utilize one
foreground and one background layer to present the video content
in this paper. However, additional layers can readily be implemented
to accommodate more complex motion and scenes as indicated in
[Kasten et al. 2021]. To encourage the network generating sharp
images, we incorporate a reblur module to reproduce the blurred
images, allowing the network to be optimized using the original
input video frames as self-supervision.

3.3 Lens Blur Layer
To enable reblurring of the latent sharp image, we have developed a
differentiable disk kernel CUDA layer that supports the continuous
radius of PSF in our reblur module. While the disk kernel is consid-
ered a more accurate representation of realistic lens blur compared
to the Gaussian kernel [Potmesil and Chakravarty 1982], it presents
a challenge in terms of differentiability. Traditional disk kernels are
typically represented in discrete sizes, making them unsuitable for
accurately representing a continuous PSF radius. Existing methods
for achieving differentiability with the disk kernel typically rely
on functions like the hyperbolic tangent (tanh) as demonstrated in
[Busam et al. 2019] and [Luo et al. 2023], or piecewise functions
as discussed in [Gwosdek et al. 2011]. These approaches primarily
focus on controlling the size of the PSF and result in uniform PSFs.
However, the actual shape of the PSF is non-uniform, with sharply
defined fall-off edges due to optical aberrations, as highlighted in
[Tang and Kutulakos 2012]. Abuolaim et al. [2021] attempted to
create the fall-off boundary of the PSF by combining a Butterworth
filter with an undifferentiable disk kernel, resulting in a final kernel
that remains undifferentiable. In this paper, we propose a straight-
forward and efficient solution—a differentiable disk kernel that
inherently captures the sharply defined fall-off boundary without
the need for additional modifications or complex functions. The
value 𝑘 inside our differentiable disk kernel can be calculated as:

𝑘 =
𝑒𝛽𝑑

𝑒𝛽𝑑 − 𝑑
, with 𝑑 = 𝑟 −

√︃
𝑥2 + 𝑦2, (2)

where 𝑑 ∈ R represents the distance to the edge of disk, 𝑟 ∈ R+ the
radius of disk, and 𝑥,𝑦 ∈ [−⌊ 𝑠2 ⌋−1, ⌊

𝑠
2 ⌋+1] with 𝑠 ∈ N representing

the kernel size. We use 𝛽 ∈ R+ to control the thickness of the fall-
off boundary. Note that the value of 𝛽 should be greater than 1

𝑒
to ensure a positive kernel. We used 𝛽 = 2 in our lens blur CUDA
layer. We applied per-pixel scatter-sum convolution similar to [Gur
and Wolf 2019]. With our lens blur layer, the sharp image can be
reblurred as:

𝑐
p
blur = L(𝑐

p
sharp, 𝑟

p) (3)

For simplicity and efficiency, we construct the estimated sharp
image using two layers. Optionally, multiple layers can be used,
compositing from back to front, to better handle occluded areas
around the subject’s silhouette, as demonstrated in [Zhang et al.,
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Figure 4: Our differentiable disk kernel. In the first two rows,
we compare with the Gaussian kernel, an undifferentiable
disk kernel, and methods from [Gwosdek et al. 2011] and
[Busam et al. 2019]. We show real sharp and blurred images
(GT sharp and GT blur) and their reblurred versions using
these kernels. In the third row, we vary our differentiable
disk kernel’s radius 𝑟 , and in the last row, we demonstrate
the fall-off effect controlled by 𝛽 .

2019]. As depicted in Fig. 4, we conduct a comparative analysis
involving our differentiable disk kernel, the Gaussian kernel, an
undifferentiable disk kernel, and methods outlined in [Gwosdek
et al. 2011] and [Busam et al. 2019]. Our disk kernel presents a
realistic fall-off boundary and approximates the real PSF more
closely. To demonstrate our proposed disk kernel’s advantages,
we reblur a sharp image (GT sharp) and compare the outcomes
with the other kernels. As expected, the Gaussian kernel fails to
produce bokeh balls, while the undifferentiable disk kernel and
the methods from [Gwosdek et al. 2011] and [Busam et al. 2019]
yield similar reblurring outcomes. In contrast, our kernel replicates
the subtle soap bubble effect, closely resembling the captured real
bokeh ball (GT blur). Moreover, we present the effect of different
kernel radius 𝑟 and the effect of parameter 𝛽 in the last two rows
of Fig. 4 respectively.

3.4 COC Map Estimation
Our lens-blur CUDA layer requires per-pixel input regarding the
radius of COC. Typically, a physical thin lens model is employed
to compute COC from depth, which relies on camera-specific pa-
rameters when capturing this particular video, such as aperture
size, focal length, and focus distance. Capturing depth and such
metadata would greatly limit the applicability of our method. In
our pipeline, we address this challenge by training a network C
to directly estimate the COC radius 𝑟p = C(𝑐pblur) in pixel units
from each frame. To this end, we employ the concept of transfer
learning and draw upon encoded defocus knowledge from exist-
ing defocus deblurring networks. Specifically, we train a defocus
map estimation network structured similarly to [Ruan et al. 2023]
due to its lightweight and efficient design, which aligns with our
requirements. We fix the weights of their encoder, which encodes
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rich defocus information after being trained on large datasets, and
exclusively train the modified decoder to estimate the defocus map
rather than a sharp image. We show the effectiveness of this strat-
egy in Sec 4.2 and generalize well on real image defocus estimation.
To supervise the network training, we create a large defocus map
estimation dataset, which includes rendered defocus images and
corresponding ground truth COC maps. We select 22 animations
from Blender Open Movies [Blender 2024] and render 25 distinct
defocus variations for each frame, encompassing 5 different defocus
levels (aperture sizes) and 5 focus distances. In total, we prepare
a dataset comprising 27K pairs of defocus and COC maps, where
COC map is obtained based on the focal distance, f-number and
depth map.

3.5 Loss
In training our network, we incorporate a subset of loss functions
from the original layered neural atlas approach. These include
L𝑟𝑖𝑔𝑖𝑑 , which ensures a rigid mapping to the atlas for intuitive
editing through the Jacobian matrix; L𝑓 𝑙𝑜𝑤 , which minimizes dis-
parities between corresponding points in the video, ensuring con-
sistency; and L𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 , which prevents redundant representations
in both foreground and background atlases. Please refer to [Kasten
et al. 2021] for more details. We combine our losses as follows:

L =

𝑛∑︁
𝑖=1

(𝜆1L𝑟𝑒𝑐𝑜 + 𝜆2L𝑓 𝑙𝑜𝑤 + 𝜆3L𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 + 𝜆4L𝑟𝑖𝑔𝑖𝑑 ), (4)

Specifically, for L𝑟𝑒𝑐𝑜 between the blurry input video and re-
blurred frames as shown in Fig. 3, we use the 𝐿1 loss, together with
multi-scale structural similarity index (MS-SSIM) as suggested in
[Zhao et al. 2016] for the image restoration. 𝜆𝑛 are our weights
of losses during training, the choice of which we explain in the
following section.

4 EXPERIMENTS
4.1 Implementation details
We evaluate our pipeline using videos with dimensions of 512×288,
each consisting of approximately 60 frames. The training process
was conducted on an NVIDIA Quadro RTX 8000, employing the
Adam optimizer with a learning rate of 1e-4 over 50,000 iterations.
To control the loss functions, we set the weights 𝜆1 to 𝜆4 to 0.3, 1.5,
100, and 0.5, respectively. We set the atlas resolution at 640 × 360,
with the input noise dimension being eight times smaller than that
of the atlas.

In line with the original layered neural atlas approach, we per-
formed preliminary estimations of optical flow using RAFT [Teed
and Deng 2020] and generated masks using SAM [Kirillov et al.
2023] for the first frame and XMem [Cheng and Schwing 2022]
for subsequent frames. The training duration ranged from 6 to 8
hours. When training the COC Map Estimation Network, we start
with a learning rate of 3e-4 for 300,000 iterations, followed by a
linear decay to 1e-6 over another 300,000 iterations.

To assess our pipeline’s effectiveness, we evaluated two types of
videos: rendered and real. For rendered videos, we modified four
clips sourced from Blender Open Movies [Blender 2024] (distinct
from our COC training dataset) to simulate camera misfocus. We

Input Inversedof Ours GTDMENet

Figure 5: Qualitative comparison of COC map estimation on
our semi-synthetic images and BLB dataset [Peng et al. 2022].

utilized five clips of real videos, two of which were captured using
a Canon 6D II camera, while the remaining three were obtained
from online sources.

4.2 Results & Comparisons
We compare our approach to RDPD (RSDP+ variant) [Abuolaim
et al. 2021] - the first framework that tackles defocus deblurring on
image sequences, and Neucam (video deblur variant) [Huang et al.
2023] - video deblurring that uses implicit camera model. Note that
while Neucam does not test video defocus deblurring in their paper,
in our experiments, Neucam always converges and learns defocus
deblurring.

We present in-depth qualitative comparisons for real captured
video and rendered animation in Fig. 9. Among the methods evalu-
ated, RDPD performs the least effectively in defocus deblurring, as
the defocus blur remains unchanged in the original video frames,
as evidenced in the insets of each frame and the time-dimensional
data slice. Neucam, while capable of recovering sharp information,
introduces noticeable artifacts. In contrast, our approach excels in
both the quality of sharp content reconstruction and consistency.
It’s worth noting that small details, such as facial expressions, pose
a challenge for all algorithms, including ours, as illustrated by the
face of the truck driver in Fig. 9.

Table 1: Quantitative comparison on our rendered datasets.

Method PSNR↑ SSIM↑ FovVideoVDP↑ Flip ↓ tPSNR↑
Neucam 25.17 0.86 5.66 0.13 28.64
RDPD 27.93 0.92 6.91 0.10 31.81
Ours 29.23 0.95 7.20 0.07 33.15

We add corresponding quantitative comparison only on rendered
animation in Tab. 1, as the ground truth for real videos is not
available. Besides the PSNR and SSIM, we also use perception-
informed FovVideoVDP [Mantiuk et al. 2021], Flip [Andersson et al.
2020], and tPSNR [Banitalebi-Dehkordi et al. 2016] for capturing
the distortions over large areas. Our approach achieves the best
performance across all metrics.

COCmap estimation. We assess our COC map estimation net-
work in comparison to the top two approaches, namely, DMENet
[Lee et al. 2019] and Inversedof [Piché-Meunier et al. 2023] (IDOF),
as depicted in Fig. 5 and summarized in Table 2. For quantitative
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Table 2: A quantitative analysis of our COC map estimation
network, based on RMSE across two datasets, and we show
both trainable parameters and total, denoted by a slash, along
with the volume of the dataset used for training. We exclude
DMENet from this quantitative comparison due to its differ-
ing representation (DMENet employs sigma, in contrast to
our use of COC diameter) but include it in the qualitative
analysis.

Method BLB SSD Params (M) Dataset (Train)
IDOF 8.30 2.30 156/156 1120K
Ours 8.77 2.80 10/37.5 37k

comparison, we perform the evaluation on two datasets: the BLB
dataset [Peng et al. 2022], employing the Blender’s Cycles renderer,
allowing for a realistic representation of defocus effects while pro-
viding absolute scale COC values. Additionally, we construct a
semi-synthetic dataset (SSD) using Bokehme [Peng et al. 2022],
combining the traditional physics-based rendering approach with a
neural rendering method, as recommended by [Piché-Meunier et al.
2023], and apply it to real RGB images. We randomly select 300
images from the FiveK Dataset [Bychkovsky et al. 2011] and gener-
ate 15 unique defocus variations for each image. These variations
include 5 different defocus levels and 3 distinct focus distances, re-
sulting in a test dataset of 4.5k images. Note that our neural network
was not trained on these datasets; they were employed exclusively
for testing purposes.

Table 2 illustrates our method’s performance, which is compara-
ble to IDOF, albeit with marginally lower numbers. IDOF utilizes
three Transformer-based structures to estimate disparity, defocus,
and per-pixel weights between them, enhancing accuracy at a cost
approximately five times greater than our approach. Additionally,
IDOF trained on a dataset of roughly 1120k images, whereas our
strategy was trained on a more modest dataset of 37k images. This
dataset comprised approximately 11k real images originally in-
tended for single-image defocus deblurring and around 26k images
rendered for training purposes.

Table 3: Ablation study on the COC network training strategy
evaluated on the two datasets using RMSE.

Method BLB SSD
Fixed encoder 8.77 2.80
Train from scratch 12.26 3.43

Our method, illustrated in Fig. 5, roughly matches the visual
quality of IDOF and also adeptly manages difficult areas, such as
glass. This performance mainly stems from the proficiency of our
pre-trained encoder in extracting unique features from defocused
images. This capability enhances the accuracy of defocus map es-
timation and shows strong generalization in real image defocus
map estimation tasks. The ablation study results, detailed in Table
3, further support the effectiveness of this approach. Notably, the
performance diminished when we trained the encoder from scratch
using our rendered dataset rather than utilizing a pre-trained en-
coder.
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Figure 6: The comparison in video defocus deblurring in-
volves using the original Layer Neural Atlas paper, adapting
the Layer Atlas work with our reblur module, and our ap-
proach, which learns the atlas utilizing the deep image prior.
© 2024 Cinecom Belgium BV

Effect of COC map estimation network C. In addition to
demonstrating the performance of the COC map itself with state-
of-the-art (SOTA) algorithms, we also evaluate its impact on our
pipeline. We compare it against alternative methods by either re-
moving it entirely, identified as the baseline, or replacing it with
existing COC estimation methods. We present results in terms of
PSNR and SSIM for both reconstructed all-in-focus and reblurred
images in Tab. 4.

The inaccurate COC map from DMENet leads to inferior per-
formance, whereas our results are on par with IDOF regarding
estimated COC (see Tab. 2) and translate to comparable restora-
tion quality. This suggests that an accurate COC map is crucial for
precise deblurring and reblurring performance.

Table 4: Ablation study on the impact of the COC map esti-
mation network in our pipeline. We present the quantitative
assessment of reblurred and deblurred images of the truck
scene. Data are denoted in format Reblur/Sharp in the table.

Metric Baseline DMENet IDOF Ours
PSNR 35.20/29.55 38.18/31.18 39.14/32.07 39.76/32.19
SSIM 0.917/0.796 0.962/0.872 0.977/0.915 0.978/0.914

Comparison to [Kasten et al. 2021]. Figure 6 presents a quali-
tative comparison of the layered neural atlas, the same atlas equipped
with our reblur module, and our present solution. The layer neural
atlas, which is originally designed for sharp RGB images, effectively
reconstructs video content. However, the presence of spatially and
temporally varying blur introduces ambiguities across frames, lead-
ing to a ghosting effect on faces. Merely appending the reblur
module, as described in Sec. 3.2, fails to recover sharp details. In
contrast, our proposed methodology leverages the deep image prior
and incorporates the COC map constraint, ultimately delivering
superior visual quality.
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Input RAFT UV estimated

Figure 7: The optical flow directly estimated from our UV
maps achieves comparable performance when compared to
[Teed and Deng 2020]. Agent 327 © 2024 Blender

5 APPLICATIONS
In this section, we showcase two practical applications that di-
rectly leverage our pipeline’s capabilities. Firstly, we illustrate how
focus tracking for selected scene components can be seamlessly
performed on the atlases generated by our system. Secondly, we
demonstrate that our learned UV map enables the recovery of im-
proved optical flow in defocused videos, achieving somewhat com-
parable performance of the state-of-the-art optical flow estimation
algorithm described in [Teed and Deng 2020].

5.1 Focus Tracking
The layered neural atlas representation allows the refocusing pro-
cess to be edited on a 2D atlas image, which is then mapped back
to the original video frames. As demonstrated in Fig. 1, by keeping
the foreground atlas and only adding blur to the background atlas,
we can correct and simulate the focus tracking that failed during
capturing. Please refer to the supplementary video.

5.2 Optical Flow Estimation
We approximate a linear transformation from an arbitrary atlas
point (𝑢, 𝑣) to an (𝑥,𝑦, 𝑡) pixel coordinate in an arbitrary frame 𝑡 as
the product with the inverse Jacobian of the UV transform learned
by the mapping network 𝑱 −1

M
offset by a constant vector offset 𝒐:

©«
𝑥

𝑦

𝑡

ª®¬ = 𝑱 −1M (𝑥 ′, 𝑦′, 𝑡)
(
𝑢

𝑣

)
+ 𝒐(𝑥 ′, 𝑦′, 𝑡) . (5)

Using Pytorch’s jacrev function, we compute and invert the Jaco-
bian at a pixel (𝑥 ′, 𝑦′, 𝑡). We choose (𝑥 ′, 𝑦′, 𝑡) from all integer pixel
coordinates in frame 𝑡 such thatM(𝑥 ′, 𝑦′, 𝑡) is closest to (𝑢, 𝑣) by
evaluatingM on frame 𝑡 followed by a nearest neighbour lookup.
We compute the offset 𝒐 as:

𝒐(𝑥 ′, 𝑦′, 𝑡) = ©«
𝑥 ′

𝑦′

𝑡

ª®¬ − 𝑱 −1M (𝑥 ′, 𝑦′, 𝑡)M(𝑥 ′, 𝑦′, 𝑡) . (6)

Linearly interpolating the nearest inverse Jacobians and offsets with
scipy.interpolate.LinearNDInterpolator further improves re-
sults. We compute flow from frame 𝑡0 to frame 𝑡1 by mapping pixel
coordinates (𝑥,𝑦, 𝑡0) to (𝑢, 𝑣) usingM, and, with the described in-
verse transform, computing (𝑥,𝑦, 𝑡1) from the (𝑢, 𝑣) atlas points.

Table 5 and Fig. 7 compare the estimated optical flow between
our method and RAFT [Teed and Deng 2020], testing on various
frame intervals across four scenes. Our method is comparable to
RAFT on neighbor frames and outperforms it on long-range optical
flow.

Table 5: Quantitative comparisons of optical flow: our
method / RAFT [Teed and Deng 2020].

Interval RMSE EndPoint
Error

Angular
Error

Length
Error

1 0.598/0.614 0.631/0.592 15.10/9.818 0.433/0.493
3 1.654/1.773 1.685/1.543 12.45/10.67 1.173/1.217
5 2.657/3.330 2.606/2.442 10.95/11.14 1.842/1.793
7 3.778/4.109 3.432/3.168 9.628/11.45 2.510/2.217
9 5.310/6.193 4.406/4.653 8.978/11.23 3.304/3.493
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Figure 8: Our method exhibits limitation when objects ex-
perience only a few large defocus levels, as depicted in the
inset shown here. The upper row indicates that it is heavily
defocused and then occluded (see the frame index). While
we could restore it, the restoration performance is limited.

6 CONCLUSION
In conclusion, we propose a systematic end-to-end solution to video
defocus deblurring and editing. By generating and parameterizing
defocused video into layered neural atlases through a differentiable
thin lens model within a self-supervised network, our method en-
ables achieves consistent, sharp video reconstruction and focus
tracking in post-processing. Furthermore, we implement a lens
blur CUDA layer featuring a novel differentiable disk kernel that
accurately simulates the realistic fall-off boundary of the PSF.

Limitations. Similar to the original layered neural atlases [Kasten
et al. 2021], our model could not handle videos with objects in large
self-occlusion, which require more layers of atlases. Notably, our
method excels when objects experience many distinct defocus blur
levels. However, performance worsens when fewer defocus levels
are present, as illustrated in Fig. 8. The inset is heavily defocused
and then occluded by the person, we can restore it but to a limited
extent. This is attributed to the high degrees of freedom inherent
in our problem.
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Figure 9: We compare our method to relate work on real captured video (up) and rendered animation (bottom). We crop and
enlarge the small inserts for better comparison with region locations indicated by blue and orange dash line rectangle. We slice
two pieces of data (pink and yellow dash line) on time dimension and visualize at the last two columns for temporal consistency
comparison. Blue arrows have been used to highlight the artifacts and temporal inconsistency. Agent 327 © 2024 Blender
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